
Chapter 7: Linear Programming in Practice

Because linear programming is so remarkably useful in practice, it has been the subject of
ongoing research since its invention over 50 years ago. There have been some very
interesting and valuable developments in that time. If you will be working with linear
programming in practice, then you should be aware of some of the developments that are
briefly surveyed in this chapter.

Alternative Algorithms for Solving Linear Programs

The simple version of the simplex method that you have seen so far, and that is presented
in most introductory textbooks, is not actually used in most commercial LP solvers.
Commercial LP solvers use a variation that is much more efficient when implemented on
a digital computer. In fact, there are several common variations of the simplex method,
as well as methods that are not based on simplex at all. Some of the most important are
described below. The important issue is to know when to apply each algorithm. If speed
of solution is an issue, then it may pay to search out the special solution algorithm that
applies in your case.

The Revised Simplex Method

This is the workhorse algorithm implemented in most commercial simplex-based LP
solvers. It is the same familiar simplex method that you know, with a few key
differences that make it more efficient for computer solution. The main improvements
over the basic simplex method are described next.

Updating the objective function row. When the tableau is put into proper form, the
objective function coefficients of the basic variables should be zero. Knowing this, there
is no point in actually carrying out those calculations. The revised simplex method
calculates only the objective function row coefficients for the nonbasic variables. It
needs these to choose the entering basic variable.

Finding the leaving basic variable. The leaving basic variable is found by using the
minimum ratio test in which each ratio is calculated as the right hand side value divided
by the coefficient in the pivot column (entering basic variable column). This means that
we don’t really need to know the coefficients in the other columns. Hence the revised
simplex method calculates only the tableau coefficients in the entering basic variable
column. Further, the minimum ratio test is not carried out for rows whose pivot column
entry is negative or zero (the result is known beforehand to be “no limit”). Hence the
revised simplex method calculates the right hand side value only for rows whose pivot
column entry is greater than or equal to zero.

Basis update. The essential facts about any tableau are contained in a matrix called the
“basis inverse”. The basis matrix is constructed by including only those columns from
the original tableau that correspond to the current set of basic variables. This will be a

Practical Optimization: a Gentle Introduction John W. Chinneck, 2001
http://www.sce.carleton.ca/faculty/chinneck/po.html

1

square matrix. If you wanted to calculate the values of the basic variables from scratch,
you would need to invert this matrix as part of the process. Hence the basis inverse is an
implicit part of any tableau. We don’t have to do an entire basis matrix inversion at each
tableau though because the simplex method provides us with a way of updating the basis
inverse as we move from tableau to tableau. The revised simplex method uses very
efficient updating methods to update a representation of the basis inverse (called an LU
factorization) at each iteration.

Efficient storage. Finally, the revised simplex method uses efficient sparse-matrix
storage schemes. A “sparse matrix” is filled mostly with zeros. If you were to write out
the tableau for most industrial-scale linear programs, you would find that they are sparse;
more than 90% of the entries are zero. This is because each constraint normally only
involves a few of the variables from among the many defining the problem, and each
variable usually appears in only a few constraints and/or the objective function. Instead
of storing a huge matrix that is mostly zeros, sparse-matrix techniques instead store the
address of the cell of the matrix, along with the value in the matrix cell. For example, if
the matrix has the value 75.4 in the 98th row and 506th column, a sparse matrix
representation might be (98, 506, 75.4). Even more efficient representations are used in
many LP codes. Because only the nonzero elements of the matrix are stored, sparse
matrix schemes are hugely more space-efficient.

Other than these implementation differences, the revised simplex method is basically the
same as the simple simplex method that you have learned. However, those
implementation differences can be important in practice. For example, knowing which
sparse matrix representation is used to store the matrix can help you to quickly estimate
the memory requirements for a particular LP model so you will know whether the
problem can be solved on the machine that you are using.

The Dual Simplex Method

Every linear programming model has a related mirror-image representation called the
dual. Without going into details, the dual is constructed by turning the LP matrix
sideways: the objective function row becomes the right hand sides column, the right hand
sides column becomes the objective function row, and the constraints are read along the
original columns instead of along the rows. There are also rules governing the
conversion of the variable bounds and the constraint types (≤, ≥, =). It turns out that if
you solve the dual form of an LP model, you can also recover the solution to the original
problem (called the primal)!

There are many other interesting relationships between the primal and dual models. For
example, as you proceed through the primal solution, every feasible cornerpoint solution
is dual-infeasible. The reverse is also true: every dual-feasible cornerpoint traversed
while solving the dual problem is primal-infeasible. The only point that is both primal-
feasible and dual-feasible is the optimum point.

Now the speed of the simplex method on a particular problem is mainly governed by how
many iterations must be performed before the optimum is found, i.e. how many

Practical Optimization: a Gentle Introduction John W. Chinneck, 2001
http://www.sce.carleton.ca/faculty/chinneck/po.html

2

cornerpoints must be visited. The number of cornerpoints that must be visited is related
to how many cornerpoints exist in the model: when some model A has more cornerpoints
that some model B, then you naturally expect that the solution of model A will usually
take longer than the solution of model B. The number of cornerpoints generally increases
with the number of constraints in the model, because the constraints define the
cornerpoints. Hence a model having more constraints than another most often takes
longer to solve because the extra constraints define more cornerpoints.

Now let’s take a look at a model that has many more constraints than variables. The dual
of the model (taking the matrix sideways) will have many fewer constraints than the
original model. All else being equal, solving the dual model will take much less time
than solving the original primal model, and yet the solution to the original model can be
recovered from the dual solution! Solving the dual then permits a massive speed-up in
solution time for very little effort in cases where the number of constraints is greater than
the number of variables.

The dual simplex method provides a way of using the dual representation while operating
on the primal model so that the dual representation is never explicitly formed. Some
solver manufacturers report that the dual simplex method outperforms the primal simplex
method on a large majority of their test cases.

Solving Network Linear Programs

We will have more to say about this in the next chapter. For now, it is sufficient to know
that there is a common and very useful special case of linear programming known as
networks, or network flow programming. The main idea here is that the network is
constructed by connecting various nodes via arcs, which transport flow. Subject to limits
on the arc flow capacities and demands for flow at various nodes, the goal is to find the
set of arc flows that solves the problem at least cost.

The specialized network simplex method is up to 100-200 times faster than the general
simplex method applied to the same problem. Many solvers now have routines that first
scan your LP to see whether it has any embedded network substructures. If it finds an
embedded network, then it is able to speed up the overall solution by applying the
network simplex method to the network substructure and patching this partial solution
together with the rest of the solution. There are a number of other algorithms for solving
network LPs, such as the auction algorithm, though the network simplex method is the
best known and most used.

There are several different classes of network models, as we shall see in the next chapter,
including transportation, assignment, and transshipment models. There are efficient
special algorithms for these problems, including the Northwest Corner method, Vogel’s
method, the Hungarian method, etc. The maximum-flow/minimum-cut network model
can also be solved by numerous special-purpose algorithms including the original Ford
and Fulkerson method.

Practical Optimization: a Gentle Introduction John W. Chinneck, 2001
http://www.sce.carleton.ca/faculty/chinneck/po.html

3

There are also several classes of models that are partway between network models and
general LPs. Processing networks, for example, can be viewed as networks with general
side constraints that fix the proportions of the flows at a node. Generalized networks are
another class of model in which the flow out of an arc is a fixed multiple (including a
negative multiple!) of the flow into the arc. Both of these classes have specialized
solution algorithms that are many times faster than applying a general revised simplex
algorithm.

Special-purpose, very fast algorithms abound in network programming.

Interior Point Methods

Interior point methods were a very surprising development when they arrived in 1979.
For the first 30 years of linear programming, all the methods for solving general LPs
were based on the simplex method: the important idea was to proceed along the exterior
of the feasible region, moving from cornerpoint to cornerpoint. Then along came the
notion of moving through the interior of the feasible region, and not visiting cornerpoints
at all until, perhaps, the final solution.

Khatchian (there are various spellings of this
Russian name) introduced the first interior
point method in 1979. It is called the ellipsoid
method and it works by fitting
multidimensional ellipsoids into the feasible
region. The axes of the ellipsoid determine
the direction for further movement, and the
ellipsoids become gradually smaller and
smaller as they move farther and farther into
the optimum cornerpoint of the feasible
region. See Figure 7.1 for an illustration.
Khatchian’s method was quite slow in
practice, much slower than the simplex
method, but it was a theoretical breakthrough.

Karmarkar’s method appeared in 1984 and
was a major development that was reported in
newspapers worldwide. Karmarkar’s method
geometry to determine the direction for movem
region. It is a very efficient method for very larg
faster for small to medium LPs. The reason for
method is very costly in terms of computing t
requires only a small number of iterations. This
smaller LPs, the very quick iterations of the rev
the solution first.

AT&T, Karmarkar’s employer, originally sold
package with a specialized computer at a price

Practical Optimization: a Gentle Introduc
http://www.sce.carleton.ca/faculty/chinneck/po.html
1

2

3

4

optimum

Figure 7.1: Illustration of Khatchian's
ellipsoid method.
 uses transformations from projective
ent through the interior of the feasible
e LPs, but the revised simplex method is
this is that each iteration of Karmarkar’s
ime, but a complete solution generally
 trade-off pays off for large LPs, but for
ised simplex method generally arrive at

an implementation of his method in a
 of about US$1 million. Many of the

tion John W. Chinneck, 2001 4

essential implementation details were also not released so that the method could not be
copied. Seen as a bit of an affront by the rest of the optimization community, this spurred
a great deal of research into interior point methods with the result that much improved
interior point algorithms are widely available today. Many of these more recent interior
point algorithms borrow ideas from nonlinear programming and are known as “barrier
methods”.

Interior point methods have great practical value in solving large LPs, but are also of
special interest to researchers because they prove for the first time, theoretically, that LPs
can be solved quickly (in what is known as “polynomial-time”). Oddly, the simplex
method, so successful in practice, has poor theoretical performance. It is possible, for
example, to construct a special pathological LP in which the simplex method has to visit
every cornerpoint before arriving at the optimum.

In the original basic form, most interior point algorithms approach, but never actually
reach the optimum cornerpoint. To function correctly, the current solution point must
always remain strictly in the interior region. This prevents the use of most sensitivity
analysis features, which depend on arriving at an optimum cornerpoint. For this reason,
many solvers have a “cross-over” feature in which, near the optimum, the solution
method switches over to the simplex method for the last few iterations to the optimum
cornerpoint. Then the sensitivity information is available.

If you will be solving extremely large LPs, then you need to know a bit about interior
point solution methods. In practice, interior point methods are most likely to be the best
choice for large models, but some versions of the simplex method (especially the dual
simplex method) may prove faster in some cases.

Other LP Solution Algorithms

There is a long list of other solution algorithms for general linear programs, for example,
the out-of-kilter method. There are variants for upper-bounded variables and
decomposition methods that tear large LPs into smaller pieces, solve these independently
and stitch the results together, with a larger iterative process to balance the overall
solution between the pieces.

Column-generation techniques provide ways of identifying the entering basic variable
without calculating all of the objective function coefficients of the nonbasic variables.
The columns are then generated only as needed. This can be a valuable time-saver for
problems having many variables (e.g. millions).

There is an astonishing gamut of inventive methods and algorithms, with more arriving
daily. The solution of linear programs continues as a lively area of research after all
these years. Perhaps you can contribute a breakthrough of your own, becoming as
famous as Dantzig or Karmarkar!

Practical Optimization: a Gentle Introduction John W. Chinneck, 2001
http://www.sce.carleton.ca/faculty/chinneck/po.html

5

Advanced Techniques in Linear Programming

There are numerous advanced techniques included in any commercial-quality LP solver.
You should be generally aware of these techniques, though the details vary from solver to
solver.

Starting Points

Many solvers include the ability to start the solution from any user-chosen point. You
may, for example, have reason to believe that the solution is very close to a particular
point, perhaps the solution from the last time you ran the LP, maybe in the last business
quarter. The solver then starts a phase 1 solution at that point, even if it is not a
cornerpoint, moves swiftly to a phase 1 cornerpoint, and continues iterating from there to
the optimum solution. A well-chosen initial point can greatly speed the overall solution.

Crash Starts

A crash start is a heuristic method to quickly find a point or basis that is likely to be
near-feasible or near-optimal. These heuristics are highly individual, but all have the
objective of generating an initial point that is closer to optimality than the usual method
of simply setting all of the original variables to zero. As described above, the solver is
then able to start iterating from this point immediately.

Advanced Starts: Warm and Hot Starts

If the solution has been stopped for some reason, then the current basis and other
information can be stored. When the solution is restarted, this stored information
provides a hot start which permits the solver to simply pick up where it left off and
continue to the optimum, rather than having to go through the entire set of iterations to
reach the current point again.

If there have been some minor changes to the LP since the solution process was stopped
(could have stopped at the optimum), then you may be able to use a warm start in which
the previous solution and basis are initially used to restart. This usually means that you
can arrive at the new optimum point in only a few iterations. Warm starts are extremely
useful if you are repeatedly solving different versions of the same LP, each version of
which is only very slightly different from the last. This is very useful in mixed-integer
linear programming, and also in the algorithms for analyzing infeasibility in linear
programs.

Depending on the changes that have been made, an expert can select which algorithm to
use when the problem is restarted. For example, if a constraint has been added that
renders the current point infeasible, it will still be dual-feasible, so that the dual simplex
method can be used to resume the solution process. By the same token, adding a new
variable will mean that the current solution is still primal-feasible, but it will usually be
dual-infeasible, so the primal simplex method should be used to restart the solution
process.

Practical Optimization: a Gentle Introduction John W. Chinneck, 2001
http://www.sce.carleton.ca/faculty/chinneck/po.html

6

Scaling

LP solvers run on digital computers. Anyone doing mathematical calculations on a
digital computer needs to be aware that only a finite number of bits are used to represent
real-valued numbers (most commonly 64 bits in linear programming implementations).
By necessity, this introduces some granularity into the representation of real numbers,
which can cause calculation difficulties. Real numbers are represented in two parts using
scientific notation: the number itself (or mantissa), and the corresponding power of ten
(or exponent) by which it is multiplied. If a similar scheme were applied to the familiar
base-10 number system using two digits for the mantissa and one digit for the exponent,
some example number representations might be 3.8×102 or 1.2×10-3.

When we need to add two numbers in the computer, the first step is to align the
exponents so that the addition can take place (i.e. convert both numbers to the same
exponent, usually the larger one). But look what happens when we try to do this with our
hypothetical limited-digit example numbers above: the addition becomes 3.8×102 +
0.000012×102. Because 0.000012×102 is not representable with only 2 digits for the
mantissa, it becomes 0.0×102, i.e. zero, so the addition does not actually take place. The
same problem arises when numbers are represented in binary form.

Similar difficulties plague most numerical operations on digital computers. As we have
seen above, the difficulties are particularly acute when the numbers are of very different
size. Numerical problems with LP solutions crop up most often when the coefficients in
the model are of widely differing size. If possible, this should be avoided during the
formulation phase, perhaps by choosing units so that the coefficients are similar in size
(use liters instead of milliliters for example).

Modern LP solvers normally take some automatic steps to avoid the problem of
coefficients of widely differing size. This process is called scaling, and involves, for
example, dividing a row or column by a factor to reduce the range of the scales in the
coefficients. The scaling process is normally invisible to the user: scaling is carried out,
the model is solved, and in a post-processing step the scaling is reversed so that the
solution is correctly reported. Some solvers may produce warning messages along the
lines of “model is badly scaled”.

Analyzing Infeasibility

What do you do when the solver reports that the model is infeasible? How do you pore
through the many constraints (perhaps hundreds of thousands) to find the difficulty?
Finding an Irreducible Infeasible Subset (IIS) of constraints can be extremely helpful in a
case like this. An IIS is a small set of constraints from among the many making up the
model and has this property: the IIS itself is infeasible, but removing any one constraint
from the IIS renders the remainder of the constraints in the set feasible. Thus every
constraint in the IIS contributes to the infeasibility in some way: they all have to be there
for infeasibility to be present.

Practical Optimization: a Gentle Introduction John W. Chinneck, 2001
http://www.sce.carleton.ca/faculty/chinneck/po.html

7

Routines to find IISs are now included in most commercial LP solvers. Finding an IIS
helps in debugging the model by focusing attention on a small subset of the constraints in
the model. It still requires human insight to examine the IIS to determine what is wrong.
Perhaps a greater-than constraint has accidentally been reversed. Perhaps a parameter
has been entered incorrectly.

There are a number of combinations of the base IIS-finding routines. Two common
selections provided as options in the LP solvers (e.g. Ilog’s CPLEX solver) will permit
either fast isolation of an IIS, or a slower algorithm can be used to find a better IIS
(where a better IIS is one having few row constraints because these are usually easier for
the human to interpret).

Presolving

Presolving is reasoning that is done about the model prior to solution with the aim of
simplifying it so that a much smaller model is actually presented to the solver. This
usually speeds the overall solution time. For example, consider an LP which includes the
following three constraints: x1≥8, x2≥7, x1+x2≤15. It is obvious in this case that the only
solution to these three constraints is to set x1=8 and x2=7. Having done this, there is no
longer any point in including the constraint x1+x2≤15 in the model at all. Also, the fixed
values of x1 and x2 can now be propagated through the rest of the model, resulting in
other simplifications. For example, another constraint such as x1+x27≥96 can now be
reduced to x27≥88.

In some cases, the presolver may be able to detect infeasibility prior to the LP solution, as
in the following example: x1≥0, x2≥4, x1+x2≤3. The simple bound substitution methods
usually employed in the presolver detect infeasibility in this case. Because of the long
chain of reductions that it may have gone through, the presolver may not be able to give
an accurate report as to the cause of the infeasibility. In that case it may be better to turn
the presolver off, then submit the LP to a solver that is able to identify an Irreducible
Infeasible Subsystem (IIS). The IIS will be more useful in finding the cause of the
infeasibility.

General Analysis of Linear Programs

In developing a large and complex linear program, you are often faced unanticipated
questions in trying to explain your results. It is usually very difficult to get the kind of
information that you need from the solver output. Fortunately, there are a couple of
computer tools available for general probing of linear programs. The ANALYZE
program [http://www.cudenver.edu/~hgreenbe/imps/analyze.html] allows you to examine
your model and solution in numerous different ways to find insights. MProbe
[http://www.sce.carleton.ca/faculty/chinneck/mprobe.html] offers a different set of
probes for all forms of mathematical program, including linear programs.

Both programs are for expert users. Sooner or later you may need answers that you can’t
get from the solvers directly. Take a look at ANALYZE and MProbe then.

Practical Optimization: a Gentle Introduction John W. Chinneck, 2001
http://www.sce.carleton.ca/faculty/chinneck/po.html

8

Modeling Systems and Languages

Modeling systems and languages have been a real advance in the ease of use of
mathematical programming. Modeling languages make it simple to express very large
and complex models in a way that is easy to understand. Prior to their development, each
solver, whether linear or nonlinear, had a different input format, each of which was
arcane and complex. Many LP solvers relied on the ancient MPS format for input, a
format that is suitable only for machine input, not for human understanding. Many
nonlinear solvers required that the nonlinear functions be written as a subroutine in a
language such as Fortran or C and then compiled and attached to the solver, a process
with its own complications.

Modeling languages, on the other hand, allow the user to easily specify a mathematical
program of any type: linear, nonlinear, mixed-integer, etc. The models are normally
written in a very straightforward manner, quite similar to how it might be written in a
textbook. For example, the Acme Bicycle Company model appears as follows in the
AMPL language:
 var x1;
 var x2;
 maximize profit: 15 * x1 + 10 * x2;
 subject to mtn_bike_prodn: x1 <= 2;
 subject to racer_prodn: x2 <= 3;
 subject to metal_finishing: x1 + x2 <= 4;

In addition, you can index over sets, so that very large models can be written very
compactly. A longer objective function might be written as follows, for example:

 maximize profit: sum {j in P} c[j] * X[j];

where the set P is defined elsewhere in a data file. This allows the analyst to concentrate
on the correct form of the model without being overwhelmed by the mass of detail that
results when the sets are expanded. The associated modeling system takes care of
expanding the model before submitting it to the solver, and takes care of receiving the
results and making them available in a user-friendly manner.

Modeling systems also normally permit the attachment of numerous different solvers.
Hence if you have been using a simplex-based LP solver, but the problem has grown in
size so that you wish to try an interior-point method, then it is as simple as including a
statement that directs the system to connect to the new solver. This is a godsend in
solving nonlinear problems where the results are apt to differ significantly depending on
the solver that you use, meaning that you may want to try several different solvers. This
avoids the nightmare of writing your complex nonlinear problem in several different
input formats.

Modeling systems may also have a number of other useful features. Many have a built-in
presolver to simplify models before they are solved. They may have language extensions
permitting the programming of loops so that many variations of a base model can be set

Practical Optimization: a Gentle Introduction John W. Chinneck, 2001
http://www.sce.carleton.ca/faculty/chinneck/po.html

9

up and solved easily. Database connectivity is normally provided, along with report-
writing capabilities, etc. Figure 7.2 gives a schematic view of a typical modeling system.

If you will be doing serious optimization work, then the use of a modeling language is
essential. There are numerous good ones on the market such as AMPL
[http://www.ampl.com], GAMS [http://www.gams.com], MPL [http://www.maximal-
usa.com], AIMMS [http://www.aims.com], etc. Most have a low-cost student edition
that is bundled with student versions of a few commercial solvers. Why not get started
with one now? The languages scale to full commercial size, so what you learn now will
be directly usable in your professional life.

P
h

Modeling System

Modeling Language

Database Analysis System

Solver A Solver B Solver Z

Figure 7.2: Schematic view of a typical modeling system.
ractical Optimization: a Gentle Introduction John W. Chinneck, 2001
ttp://www.sce.carleton.ca/faculty/chinneck/po.html

10

	Chapter 7: Linear Programming in Practice
	Alternative Algorithms for Solving Linear Programs
	The Revised Simplex Method
	The Dual Simplex Method
	Solving Network Linear Programs
	Interior Point Methods
	Other LP Solution Algorithms

	Advanced Techniques in Linear Programming
	Starting Points
	Crash Starts
	Advanced Starts: Warm and Hot Starts
	Scaling
	Analyzing Infeasibility
	Presolving
	General Analysis of Linear Programs

	Modeling Systems and Languages

